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The free vibration characteristics of circular rings with sectorial cross-section are

studied based on the three-dimensional (3-D), small strain, linear elasticity theory.

The complete vibration spectrum has been obtained by using the Ritz method. A set of

three-dimensional orthogonal coordinates composing of the polar coordinates (r,y) at

ring is developed to describe the variables in the analysis. Each of the displacement

components is taken as a triplicate series: two Chebyshev polynomial series,

respectively, about the r and y coordinates, and a trigonometric series about the j
coordinate. Frequency parameters and vibration mode shapes are computed by means

of the displacement-based extremum energy principle. Upper bound convergence of the

first eight frequency parameters accurate to at least five significant figures is presented.

The effect of radius ratio, subtended angle, and initial slope angle on frequency

parameters is investigated in detail. All major modes such as flexural modes, thickness-

shear modes, stretching modes, and torsional modes, etc. are presented in the paper.

The present results may serve as a benchmark reference to validate the accuracy of

various approximate theories and other computational techniques for the vibration of

circular rings.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Rings as basic structural elements can find their applications in civil, mechanical, aircraft, and marine engineering such
as gyroscopes, springs, stiffness and tires, etc. The study on vibration characteristics of rings is very important because they
commonly have to bear various dynamic loads.

Reviewing published literatures, one can find that most studies on ring vibrations are based on the one-dimensional
beam theories [1–3]. Comparing to the straight beams, the governing equations of rings are more complicated and to
obtain their solutions is more difficult because of the initial curvature of rings. For rings with symmetric cross-sections and
material symmetry about its centreline plane, the vibrations can be divided into in-plane and out-of-plane ones, which
could be separately solved [4–9]. For rings with asymmetric cross-section, the in-plane and out-of-plane vibrations are
coupled [10,11].

It is well known that the exact elasticity theory does not rely on any hypotheses involving the kinematics of
deformation. Using the three-dimensional (3-D) elasticity theory, a complete vibration spectrum of structures can be
provided, which cannot otherwise be predicted by the approximate theories. Such an analysis not only provides realistic
results but also allows overall physical insights. Although the 3-D vibrations of circular rings with circular and rectangular
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cross-sections have been studied [12–16], few researchers studied the 3-D vibrations of circular rings with asymmetric
cross-sections. Using simple geometric polynomials as the admissible functions of every displacement components, So and
Leissa [17] analyzed 3-D vibrations of thick circular rings with square cross-sections rotated 451 from the revolution axis
using the Ritz method. Kang and Leissa [18] presented a 3-D vibration analysis for thick, circular rings with an isosceles
trapezoidal or triangular cross-section by the Ritz method. Moreover, Kang and Leissa [19] studied the 3-D vibration of
rings with an elliptical cross-section using the Ritz method.

In this paper, the Ritz method is used to study the three-dimensional free vibration of circular rings with sectorial cross-
sections. A set of orthogonal coordinates, a combination of the polar coordinate (r,y) on the origin of each sectorial cross-
section and the circumferential coordinate j around the ring are developed to describe the displacements, strains and
stresses. The displacement components are taken to be u, v and w in r, y and j coordinates. The corresponding stress and
strain components are er , ey, ej and gry, grj, gyj. Each of displacement components is expressed as a product of three
separable series: the duplicate sets of Chebyshev polynomial series, respectively, about the r and y coordinates and a set of
trigonometric series about the j coordinate. The eigenfrequencies and mode shapes are numerically calculated through
the energy optimization process.

2. Basic formulations

Consider a ring with the sectorial cross-section, as shown in Fig. 1. The origin of the sectorial cross-section forms a circle
(the dash line in the figure) whose radius is R. The initial slope angle (the angle between the coordinates xj and xy) and the
subtended angle (the sector angle) of the cross-section are y0 and y1, respectively. A combination of the polar coordinates
(r,y) at the origin of each sectorial cross-section and the circumferential coordinate j around the ring is developed to
describe displacements, strains and stresses. The polar coordinates describe the variations within the cross-section and the
circumferential coordinate describes those quantities along the direction normal to the cross-section. It is obvious that the
three-dimensional coordinates (r,y,j) form an orthogonal set. The transformation relations between the Cartesian
coordinates (x,y) and the present curved orthogonal coordinates (r,y,j) are given as follows:

x¼ ½Rþr cosðyþy0Þ�cosj; y¼ ½Rþr cosðyþy0Þ�sinj; z¼ r sinðyþy0Þ (1)

where the coordinate y begins from the axis xy.
Let u, v and w be respectively the displacement component in the r, y and j direction. The corresponding stress and

strain components are respectively er , ey, ej and gry, grj, gyj. The relations between the three-dimensional tensorial strains
and displacement components in the curved orthogonal coordinate set are given by
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Fig. 1. A circular ring with sectorial cross-section: (a) 3-D view; (b) main plane and coordinates; (c) cross-section and coordinates.
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From Eq. (1), the determinant of the Jacobian matrix of the coordinate system is given by

jJj ¼ r½Rþr cosðyþy0Þ� (3)

Therefore, the strain energy V and the kinetic energy T of the ring undergoing free vibration are

V ¼ ð1=2Þ
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T ¼ ðr=2Þ

Z 2p
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0

Z a

0
ð _uþ _vþ _wÞjJjdr dydj (4)

where r is the mass per unit volume, _u, _v and _w are the three-dimensional velocity components. Parameters l and G are
the Lamé constants for a homogeneous and isotropic material, which can be expressed in terms of the Young’s modulus E

and Poisson’s ratio n by

l¼ nE=½ð1þnÞð1� 2nÞ�; G¼ E=½2ð1þnÞ� (5)

In free vibrations, the displacement components are expressed as

u¼Uðr; y;jÞeiot ; v¼ Vðr; y;jÞeiot ; w¼Wðr; y;jÞeiot (6)

where o is the natural frequency of the ring and i¼
ffiffiffiffiffiffiffi
�1
p

.
Considering the circumferential symmetry of the ring about the coordinate j, the displacement functions are given by

Uðr; y;jÞ ¼U ðr;yÞcosðnjÞ; Vðr; y;jÞ ¼ V ðr; yÞcosðnjÞ;

Wðr; y;jÞ ¼W ðr; yÞsinðnjÞ (7)

where integer n is the circumferential wave number, i.e. n¼ 0;1;2;3; . . . ;1 to ensure periodicity. It is obvious that n=0
denotes the axisymmetric vibration. In such a case, one has

Uðr; y;jÞ ¼U ðr; yÞ; Vðr; y;jÞ ¼ V ðr; yÞ; Wðr; y;jÞ ¼ 0 (8)

Rotating the axes of symmetry, another set of displacement functions can be obtained, which corresponds to an
interchange of cosðnjÞ and sinðnjÞ in Eq. (7). However, in such a case, n=0 corresponds to the torsional vibration, i.e.

Uðr; y;jÞ ¼ 0;Vðr; y;jÞ ¼ 0;Wðr; y;jÞ ¼W ðr; yÞ (9)

Define the following dimensionless parameter and coordinates

R ¼ R=a; r ¼ r=a; y ¼ y=y1 (10)

Substituting Eqs. (6) and (7) into Eq. (4) gives
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in which,

G1 ¼

Z 2p

0
cos2 njdj¼

2p if n¼ 0

p if nZ1
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3. Ritz solution

According to Eq. (10), the Lagrangian energy functional P is given by

P¼ Tmax � Vmax (14)

Assuming that the displacement functions U ðr ;yÞ, V ðr ; yÞ, and W ðr ; yÞ can be, respectively, expressed in terms of a finite
series as

U ðr ; yÞ ¼
XI

i ¼ 1

XJ

j ¼ 1

AijFiðrÞFjðyÞ; V ðr ; yÞ ¼
XL

l ¼ 1

XM
m ¼ 1

BlmFlðrÞFmðyÞ;

W ðr ; yÞ ¼
XP

p ¼ 1

XQ

q ¼ 1

CpqFpðrÞFqðyÞ (15)

where Aij, Blm and Cpq are the undetermined coefficients and I, J, L, M, P, and Q are the truncated orders
of their corresponding series. It is well known that if FiðrÞ ði¼ 1;2;3; . . . ;1Þ is a set of mathematically complete
series, then the duplicate series in Eq. (15) is capable of accurately describing the three-dimensional displacement field
of a ring. When sufficient terms are taken, the results could theoretically approach to the exact solutions as closely as
desired.

In the present analysis, the admissible functions are taken to be the Chebyshev polynomials as follows [20]:

FiðrÞ ¼ cos½ði� 1Þarc cosð2r � 1Þ�; i¼ 1;2;3; . . . (16)

For FjðyÞ ði¼ 1;2;3; . . .Þ, one only needs to change the variable r in Eq. (16) into the variable y. Due to the traction free
surfaces for a closed ring, no displacement restraint should be considered when using the Ritz method to obtain solutions.

Minimizing functional (14) with respect to the coefficients of displacement functions, i.e.

@P
@Aij
¼ 0;

@P
@Blm

¼ 0;
@P
@Cpq

¼ 0 (17)

leads to the following eigenfrequency equation:
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; n¼ 0 for the axisymmetric vibration (20)

ðKvv �O2MvvÞB¼ 0; n¼ 0 for the torsional vibration (21)

Elements in matrices Kij and Mij (i,j=u,v,w) are given in the Appendix.

4. Convergence and comparison of results

The eigenfrequencies provided by the Ritz method converge to the exact solutions in an upper bound manner.
Theoretically, solution with any accuracy can be obtained by taking sufficient terms in Eq. (15). However, there is a limit to
the number of terms actually used in the numerical computation. Therefore, it is important to understand the convergence
rate and accuracy of the method. The convergence is presented for the first eight non-zero frequencies of a circular ring
with sectorial cross-section when the radius ratio R ¼ R=a¼ 2:0, the initial slope angle y0=�451 and the subtended angle
y1=2701. The frequency parameter O¼oa

ffiffiffiffiffiffiffiffiffi
r=G

p
for the axisymmetric and torsional vibrations with respect to different

numbers of terms is given in Table 1. The frequency parameter O for the circumferential vibrations n=1 and n=4 with
respect to the different numbers of terms is given in Fig. 2. For simplicity, equal numbers of terms of admissible functions
are taken in displacement amplitude functions U, V and W although different numbers of terms among U, V and W might
provide a more rapid convergence. All the numerical computations are performed in double precision and the piecewise
Gaussian quadrature is used to obtain the matrices in Eq. (18). Six groups of terms from 10�10 to 20�20 with an
increment 2 for each series are checked for convergence. It can be seen from Tables 1 and 2 that the first eight non-zero
frequency parameters converge monotonically to five significant figures by using 18�18 terms for each vibration
category. As the Chebyshev polynomial series used in the present analysis is a complete set, it can be concluded that these
frequency parameters are ‘‘exact values’’ up to five digits. It is seen from Table 2 that the convergence rate is almost the
same for n=1 and n=4, which means that the circumferential wave number n has no influence on the manner of
convergence.
Table 1
The convergence of the first eight non-zero frequency parameters Oi (i=1,2,y,8) of a circular ring with sectorial cross-section for axisymmetric and

torsional vibrations for R ¼ 2:0, y0=�451 and y1=2701.

Terms O1 O2 O3 O4 O5 O6 O7 O8

Axisymmetric vibration n¼0a

10�10 0.48708 0.83858 1.4302 2.3203 2.8407 3.1691 3.4521 3.8413

12�12 0.48705 0.83853 1.4299 2.3199 2.8398 3.1688 3.4486 3.8165

14�14 0.48705 0.83852 1.4297 2.3199 2.8397 3.1688 3.4485 3.8153

16�16 0.48704 0.83851 1.4296 2.3199 2.8397 3.1688 3.4485 3.8153

18�18 0.48704 0.83850 1.4296 2.3198 2.8397 3.1688 3.4485 3.8153

20�20 0.48704 0.83850 1.4296 2.3198 2.8397 3.1688 3.4485 3.8153

Torsional vibration n¼0t

10�10 1.6307 2.3181 3.1423 3.8736 3.9687 4.6881 4.9307 5.7907

12�12 1.6306 2.3180 3.1421 3.8719 3.9664 4.6718 4.9277 5.4537

14�14 1.6306 2.3180 3.1421 3.8719 3.9664 4.6706 4.9273 5.4182

16�16 1.6305 2.3180 3.1421 3.8719 3.9664 4.6706 4.9272 5.4164

18�18 1.6305 2.3180 3.1421 3.8719 3.9664 4.6706 4.9271 5.4163

20�20 1.6305 2.3180 3.1421 3.8719 3.9664 4.6706 4.9271 5.4163
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Fig. 2. The first three non-zero frequency parameters of axisymmetric and torsional vibrations for circular rings with initial slope angle y0=01 at radius
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Table 2
The convergence of the first eight non-zero frequency parameters Oi (i=1,2,y,8) of a circular ring with sectorial cross-section for circumferential

vibrations for R ¼ 2:0, y0=�451 and y1=2701.

Terms O1 O2 O3 O4 O5 O6 O7 O8

n=1

10�10 0.69105 0.94855 1.3776 2.0644 2.2235 2.5557 2.8580 3.0670

12�12 0.69100 0.94855 1.3772 2.0643 2.2233 2.5557 2.8573 3.0669

14�14 0.69098 0.94854 1.3771 2.0642 2.2233 2.5556 2.8572 3.0669

16�16 0.69096 0.94854 1.3770 2.0642 2.2233 2.5556 2.8572 3.0669

18�18 0.69095 0.94854 1.3769 2.0642 2.2232 2.5556 2.8572 3.0669

20�20 0.69095 0.94854 1.3769 2.0642 2.2232 2.5556 2.8572 3.0669

n=4

10�10 0.91113 1.3711 1.9222 2.3560 2.5569 2.7147 3.1930 3.3616

12�12 0.91105 1.3710 1.9220 2.3559 2.5566 2.7144 3.1920 3.3602

14�14 0.91102 1.3710 1.9219 2.3559 2.5566 2.7144 3.1919 3.3602

16�16 0.91101 1.3710 1.9219 2.3559 2.5565 2.7144 3.1919 3.3602

18�18 0.91100 1.3710 1.9219 2.3559 2.5565 2.7144 3.1919 3.3602

20�20 0.91100 1.3710 1.9219 2.3559 2.5565 2.7144 3.1919 3.3602

D. Zhou et al. / Journal of Sound and Vibration 329 (2010) 1523–15351528
A comparison study of the present solutions with the finite element (FE) solutions is given in Table 3. The
centerline radius of the ring is R=0.5 m and the cross-sectional radius of the ring is a=0.2 m. The material properties are
E¼ 1:2� 1011 Pa (elasticity modulus), r=1850 kg/m3 (density) and m¼ 0:3 (Poisson’s ratio). The subtended angle of the
cross-section is fixed at y1=1801. Three different initial angles of the cross-section are considered respectively: y0=01,
�901, 901. The Solid95 element with 20 nodes in the commercial ANSYS program is used in the FE analysis. For y0=01,
15 363 elements with 71 316 degrees of freedom are taken. For y0=�901, 8783 elements with 43 035 degrees of freedom
are taken and for y0=901, 12 341 elements with 66 966 degrees of freedom are taken. In the present analysis, I¼ J¼ 12
terms are taken. It can be seen from Table 3 that the present solutions are in good agreement with the FE solutions.

5. Numerical results

For thick circular rings, one-dimensional theories would bring considerable errors. In such a case, the three-dimensional
elasticity analysis can provide more accurate results. Table 4 gives the first eight non-zero frequency parameters Oi

(i=1,2,y,8) of five vibration categories ðn¼ 0a;0t ;1;2;3Þ for thick rings with the sectorial cross-section, where the radius
ratio R ¼ R=a is equal to 2.0 and the subtended angle y1 of the cross-section is equal to 1801. Three different initial slope
angles of the cross-section are considered: y0=�901, 01, 901. Moreover, Table 5 gives the first eight non-zero frequency
parameters Oi (i=1,2,y,8) of five vibration categories ðn¼ 0a;0t ;1;2;3Þ for thick rings with the sectorial cross-section,
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Table 4
The first eight non-zero frequency parameters Oi (i=1,2,y,8) of five vibration categories for circular sectorial rings at three different slope angles with

R ¼ 2:0 and y1=1801.

n O1 O2 O3 O4 O5 O6 O7 O8

y0=�901

0a 0.61400 0.67142 2.0739 3.1499 3.1570 4.1086 4.3695 4.9648

0t 1.9558 3.0660 3.9889 4.1813 5.2819 5.4860 6.3712 6.7979

1 0.65110 0.91466 2.0998 2.1124 3.0239 3.1742 3.2498 4.0035

2 0.17784 0.24870 0.84693 1.4077 2.1809 2.4761 2.9834 3.2258

3 0.46380 0.62469 1.1347 1.9345 2.3177 2.9147 3.0146 3.3123

y0=01

0a 0.39972 0.85861 2.1035 3.1893 3.2458 4.1213 4.4435 4.9647

0t 2.0874 3.1797 3.9202 4.3098 5.4056 5.4320 6.5057 6.7594

1 0.64494 0.99254 2.1283 2.3999 3.0130 3.2395 3.4662 3.9861

2 0.22150 0.43109 1.1034 1.4433 2.2817 2.9112 3.0138 3.2998

3 0.53090 0.96198 1.5923 1.9704 2.5342 3.0672 3.4114 3.5576

y0=901

0a 0.87219 1.0511 2.1195 2.9836 3.2599 4.1159 4.4896 4.9606

0t 1.7158 3.1933 3.8666 4.4176 5.2164 5.5437 6.6395 6.6636

1 0.98901 1.3550 2.0205 2.1218 2.8873 3.2595 3.5087 4.0511

2 0.41702 0.41853 1.4454 1.9806 2.1984 2.5997 2.9703 3.3054

3 0.94689 0.99057 2.0007 2.2038 2.8077 3.1853 3.2650 3.5057

Table 3

The comparison of the present solutions with the finite element solutions for the first 10 natural frequencies (fi ¼oi=2p, i=1,2,y,10) for a ring with

different initial angles.

Frequency sequence y0=01 y0=�901 y0=901

Present FE Present FE Present FE

1 392.86 (2) 392.91 318.51 (2) 318.60 642.18 (2) 642.36

2 748.13 (2) 748.23 461.85 (2) 461.97 715.78 (2) 715.94

3 799.70 (0a) 799.77 847.29 (3) 847.73 1611.9 (3) 1612.7

4 986.79 (3) 986.94 1205.0 (3) 1206.4 1699.6 (0a) 1699.8

5 1239.1 (1) 1239.6 1288.3 (0a) 1288.5 1700.2 (3) 1700.9

6 1675.6 (4) 1676.1 1388.4 (1) 1388.6 1944.5 (1) 1944.8

7 1716.7 (0a) 1716.8 1417.0 (0a) 1417.0 2014.6 (0a) 2014.7

8 1755.1 (3) 1755.6 1508.9 (4) 1510.1 2704.7 (1) 2704.8

9 2091.5 (2) 2092.6 1790.4 (2) 1791.1 2711.1 (4) 2713.1

10 2137.0 (1) 2137.1 1953.6 (1) 1953.7 2744.2 (4) 2746.2

Note: The numbers within parentheses are the vibration categories of the ring.
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where the radius ratio R ¼ R=a is equal to 2.0 and the subtended angle y1 of the cross-section is equal to 901. Five different
initial slope angles of the cross-section are considered: y0=�451, 01, 901, 1351, 2251. From Tables 4 and 5, one can see that
for the same frequency order, the torsional vibration always gives the maximum frequency values while the
circumferential vibration n=2 always gives the minimum frequency values. The effect of the initial slope angle on
frequency parameters of circumferential vibrations is greatly larger than that on frequency parameters of torsional
vibration. It can be seen that with the increase of frequency order, the effect of the initial slope angle y0 on frequency
parameters decrease. However, this conclusion is not valid for the torsional vibration.

The effect of the subtended angle y1 on frequency parameter O is studied. The initial slope angle and the radius ratio of
the rings are y0 ¼ 0 and R ¼ 2:0, respectively. The first three non-zero frequency parameters for the axisymmetric and
torsional vibrations and the first two non-zero frequency parameters for the circumferential vibrations n=1,2,3 are
respectively given in Figs. 2 and 3. It is seen from Fig. 2 that the frequency parameters for the torsional vibration
monotonically decrease with the increase of the subtended angle. When the subtended angle y141501, the first frequency
parameter for the torsional vibration approaches the third frequency parameter for the axisymmetric vibration. When the
subtended angle y1=3601, the first two frequency parameters for the axisymmetric vibration are very close to each other.
It can be seen from Fig. 3 that when the subtended angle y1=301, the first frequency parameter for the circumferential
vibration n=1 is very close to the second frequency parameter for the circumferential vibration n=3. When the subtended
angle y1=3601, the first two frequency parameters for the circumferential vibration n=1 are very close to those of the
circumferential vibration n=3. Within 1801ry1r2701 the second frequency parameters for the circumferential vibrations
n=1 and n=3 are close to each other. Moreover, it is seen from Fig. 3 that the subtended angle corresponding to the
maximum frequency parameter of each vibration categories are generally within 2101ry1r2701.
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Table 5
The first eight non-zero frequency parameters Oi (i=1,2,y,8) of five vibration categories for circular sectorial rings at five different slope angles with

R ¼ 2:0 and y1=901.

n O1 O2 O3 O4 O5 O6 O7 O8

y0=�451

0a 0.49146 0.62494 3.7832 4.4328 4.8921 5.0201 6.6086 6.6847

0t 3.0086 4.0382 5.2323 6.8032 7.1590 7.4079 9.3245 9.5528

1 0.59383 0.86456 3.0823 3.7877 4.0859 4.4430 4.8823 5.0313

2 0.13941 0.15276 0.84508 1.3503 3.2847 3.8009 4.1857 4.5208

3 0.36957 0.40913 1.1539 1.8934 3.5761 3.8233 4.2610 4.7436

y0=01

0a 0.48027 0.67476 3.7860 4.4553 4.8960 5.0177 6.6020 6.6828

0t 3.0660 3.9889 5.2819 6.7879 7.1298 7.4517 7.3263 9.5921

1 0.60486 0.91835 3.1575 3.7929 4.0453 4.4577 4.8866 5.0307

2 0.15064 0.18905 0.89235 1.4223 3.4047 3.8135 4.1717 4.5134

3 0.39774 0.49286 1.2360 1.9849 3.7497 3.8520 4.2741 4.6914

y0=901

0a 0.71818 1.0634 3.8134 4.5944 4.9067 4.9913 6.6143 6.6887

0t 3.1933 3.8666 5.5437 6.6636 7.0300 7.7204 9.3147 9.8548

1 0.93613 1.3644 3.3944 3.8395 4.0566 4.5451 4.8737 5.0278

2 0.30872 0.42949 1.4345 2.0590 3.8141 3.9872 4.3844 4.5832

3 0.76713 1.0303 2.0164 2.8326 4.0986 4.3859 4.5129 4.6808

y0=1351

0a 0.96963 1.1772 3.8450 4.6234 4.8964 4.9760 6.6020 6.6948

0t 3.2052 3.7674 5.5994 6.6440 6.9615 7.7916 9.3005 9.9010

1 1.1388 1.5359 3.4751 3.8145 4.0523 4.5452 4.8407 5.0201

2 0.42005 0.45000 1.6449 2.3066 3.9578 4.0969 4.4271 4.6199

3 1.0370 1.0748 2.2681 3.1282 4.1841 4.5312 4.6436 4.8592

y0=2251

0a 0.48276 0.82606 3.7914 4.5254 4.8982 5.0078 6.5951 6.6863

0t 3.1796 3.8991 5.4148 6.7325 7.0778 7.5765 9.3260 9.7078

1 0.67385 1.0884 3.3247 3.8088 3.9873 4.5083 4.8801 5.0283

2 0.20264 0.29624 1.0736 1.6578 3.6836 3.8691 4.1931 4.5317

3 0.51983 0.73312 1.5277 2.2940 3.9295 4.1642 4.3703 4.6708

0

0.2

0.4

0.6

0.8

1

30

Ω

θ1

60 90 120 150 180 210 240 270 300 330 360

Fig. 3. The first two non-zero frequency parameters of circumferential vibrations for circular rings with the initial slope angle y0=01 at radius ratio R ¼ 2:0

against subtended angles varying from y1=301 to y1=3601, J the first frequency parameter; n the second frequency parameter, — n=1; ? n=2; – – – n=3.
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Numerical results show that there are three kinds of non-dimensional frequency parameters which converge to
constant values with the increase of the radius ratio R. Different vibration categories correspond to different non-
dimensional frequency parameters which are, respectively, O¼oa

ffiffiffiffiffiffiffiffiffi
r=G

p
, G¼oR

ffiffiffiffiffiffiffiffiffi
r=G

p
and L¼oRR

ffiffiffiffiffiffiffiffiffi
r=G

p
. Even for the
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same vibration category, different orders can correspond to different frequency parameters. The relationships among the
three kinds of frequency parameters are G¼ RO and L¼ RG¼ R

2
O. The non-dimensional parameters corresponding to

different vibration categories and frequency orders are given in Table 6, which are independent of the initial slope angle or
the subtended angle of the cross-section.

The effect of radius ratio R/a on frequency parameters for five vibration categories n=0a,0t,1,2,3 are studied for a ring
with the initial slope angle y0=�901 and the subtended angle y1=1801. Three different frequency parameters O, G and L
are used to describe the different vibration categories and different frequency orders, as given respectively in Figs. 4–6,
where R/a is plotted along a logarithmic axis. It is seen from Figs. 4–6 that all the frequency parameters approach to
constant values with the increase of the radius ratio R/a. The effect of the radius ratio R/a on frequency parameters is
mainly limited to 0oR=ao10. The smaller R/a, the larger is the effect of R/a on frequency parameters and the larger the
circumferential number n, the larger is the effect of R/a on frequency parameters. It is seen from Fig. 4 that all frequency
parameters monotonically decrease with the increase of the radius ratio R/a. The constant value of the first frequency
parameter for the torsional vibration is the same as that of the third frequency parameter for the circumferential vibration
n=1. The converged value of the third frequency parameter for the axisymmetric vibration is the same as that for the
fourth frequency parameter for the circumferential vibration n=2. Moreover, the constant value of the second frequency
parameter for the torsional vibration is the same as that of the fourth frequency parameter for the axisymmetric vibration.
It is seen from Fig. 5 that the converged constant value of the first frequency parameter for the circumferential vibration
n=1 is the same as that of the second frequency parameter for the axisymmetric vibration. Furthermore, it is seen from
Figs. 5 and 6 that all the frequency parameters monotonically increase with the increase of the radius ratio R/a.

The first two mode shapes for the axisymmetric and torsional vibrations when R/a=0.2 are plotted in Fig. 7. It can be
seen from Fig. 7 that the first axisymmetric mode clearly includes a rigid rotation of the cross-section whereas the second
axisymmetric mode reflects the symmetric deformation of the cross-section in the y direction. Moreover, the first torsional
Table 6

Converged values of frequency parameters with the increase of the radius ratio R .

Vibration categories Frequency orders Convergent parameters

n=0t All O

n=0a 1, 2 G
Z3 O

n=1 1, 2 G
Z3 O

nZ2 1, 2 L
3, 4 G
Z5 O

1.5

2

2.5

3

3.5

100101
R/a

Ω

Fig. 4. Frequency parameter O of a circular ring with initial slope angle y0=�901 and subtended angle y1=1801 against radius ratio R/a: }, first frequency

of torsional vibration; &, second frequency of torsional vibration; n, third frequency of axisymmetric vibration; � , fourth frequency of axisymmetric

vibration; J, third frequency of circumferential vibration n=1; +, fourth frequency of circumferential vibration n=1.
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0
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3

3.5

4

100101
R/a

Γ

Fig. 5. Frequency parameter G of a circular ring with initial slope angle y0=�901 and subtended angle y1=1801 against radius ratio R/a: }, first frequency

of axisymmetric vibration; &, second frequency of axisymmetric vibration; n, first frequency of circumferential vibration n=1; � , second frequency of

circumferential vibration n=1; J, third frequency of circumferential vibration n=2; +, fourth frequency of circumferential vibration n=2.
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10

12

100101
R/a

Λ

Fig. 6. Frequency parameter L of a circular ring with initial slope angle y0=�901 and subtended angle y1=1801 against radius ratio R/a: }, first frequency

of circumferential vibration n=2; &, second frequency of circumferential vibration n=2; n, first frequency of circumferential vibration n=3; � , second

frequency of circumferential vibration n=3; J, first frequency of circumferential vibration n=4; +, second frequency of circumferential vibration n=4.
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mode reflects the symmetric warping of the cross-section in the y direction while second one reflects the antisymmetric
warping. The first two mode shapes for the circumferential vibrations n=1,2 are plotted in Fig. 8. It is seen from Fig. 8 that
the first mode for n=1 and the second mode for n=2 are antisymmetric about the coordinate y whereas the second mode
for n=1 and the first mode for n=2 are symmetric about the coordinate y.

6. Conclusions

Based on the exact, small strain and linear elasticity theory, the three-dimensional vibration characteristics of closed rings
with sectorial cross-section have been studied. The volume integrals for strain and kinetic energies have been formulated by
developing a set of curved orthogonal coordinates. By means of the Ritz method, the governing eigenfrequency equations are
derived through the minimization of the extremum of energy functional. The duplicate Chebyshev polynomial series are
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Ω1 = 0.61400
a Ω2 = 0.67142

a

Ω1 = 1.9558
t

Ω2 = 3.0660
t

Fig. 7. The first two cross-sectional mode shapes of axisymmetric and torsional vibrations for a circular ring with radius ratio R ¼ 2, inertial slope angle

y0=�901 and subtended angle y1=1801.

Fig. 8. The first two 3-D mode shapes of circumferential vibrations n=1 and n=2 for a circular ring with radius ratio R ¼ 2, inertial slope angle y0=�901

and subtended angle y1=1801.
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taken as admissible functions for each displacement component. The convergence of the first eight frequency parameters has
been examined, and accurate results to at least five significant figures have been obtained. The present analysis provides the
complete vibration spectrum for the closed rings with sectorial cross-section. Through the parametric studies, the variations
of frequency parameters versus the radius ratio, the initial slope angle and the subtended angle of cross-section are
discussed. Accurate results for three-dimensional vibration analysis of thick rings with sectorial cross-section are presented
for the first time, which could serve as valuable benchmark solutions for validating one-dimensional approximate theories
and other less rigorous computational methods for the ring vibration problem.
Acknowledgment

The work described in this paper was supported by the CAS membership ‘‘Structural vibrations in three-dimensional
solids’’ from The University of Hong Kong.



ARTICLE IN PRESS

D. Zhou et al. / Journal of Sound and Vibration 329 (2010) 1523–15351534
Appendix

The elements in Kij and Mii (i,j=u,v,w):
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Mww ¼
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i; i ¼ 1;2;3; . . . ; I; j; j ¼ 1;2;3; . . . ; J; l; l ¼ 1;2;3; . . . ; L;

m;m ¼ 1;2;3; . . . ;M; p; p ¼ 1;2;3; . . . ; P; q; q ¼ 1;2;3; . . . ;Q
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